

Features

- Worlds Smallest VCXO, 5.0 x 3.2 x 1.5 mm
- High Frequencies to 51.84 MHz
- 5 or 3.3 V operation
- Linearity ≤10%
- Tri-State Output
- Low jitter < 6ps rms
- VCXO with CMOS outputs
- 0/70 or -40/85°C temperature range
- Hermetically sealed ceramic SMD package

Applications

- SONET/SDH
- DWDM
- xDSL/PCMCIA cards
- Digital Video

Description

Vectron's VC-800 Voltage Controlled Crystal Oscillator (VCXO) is a quartz stabilized square wave generator with a CMOS output and is tested at CMOS and TTL (5 volt operation) logic levels.

The VC-800 is the smallest available VCXO making it ideally suitable for PCMCIA applications as well as any other where size is limited but performance is required.

Performance Characteristics

Electrical Performance

Parameter		Symbol	Minimum	Typical	Maximum	Units
	Frequency	fo	1.544		51.84	MHz
Supply Voltage ¹	(+3.3 V) (+5.0 V)	V _{DD}	2.97 4.5	3.3 5.0	3.63 5.5	V
Sup	ply Current	IDD		12	25	mA
Output Logic Levels Output Logic High ² Output Logic Low ²		Vон Vol	0.9*V _{DD}		0.1V DD	V
Transition Times Rise Time² Fall Time²		tr tr			5 5	ns ns
Symmetry or Duty Cycle ³		SYM	40	50	60	%
Operating temperature (order	Operating temperature (ordering option)		0/70 or -40/85			°C
Test Conditions for APR (+5V option)		Vc	0.5		4.5	V
Test Conditions for APR (+3.3V option)		Vc	0.3		3.0	V
Absolute Pull Range (ordering option)		APR	+/-50 +/- 80			ppm
Gain Transfer (See Figure 3)				Positive		
Control Voltage Leakage Current		Ivcxo			±1	uA
Control Voltage Bandwidth (-3dB)		BW	10			kHz
Pa	ckage Size			5.0 x 3.2 x 1.	5	mm

- 1. A 0.01uF and a 0.1uF capacitor should be located as close to the supply as possible (to ground) is recommended.
- 2. Figure 1 defines these parameters. Figure 2 illustrates the equivalent five gate TTL load and operating conditions under which these parameters are tested and specified.
- 3. Symmetry is defined as (ON TIME/PERIOD with Vs = 1.4 V for TTL and Vs=2.5 V for CMOS, 5 volt operation, and Vs=1.65 V for 3.3 Volt operation.
- 4. Load Capacitor will depend on frequency.

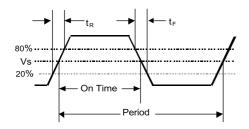
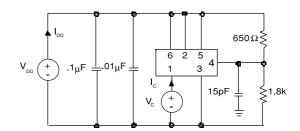
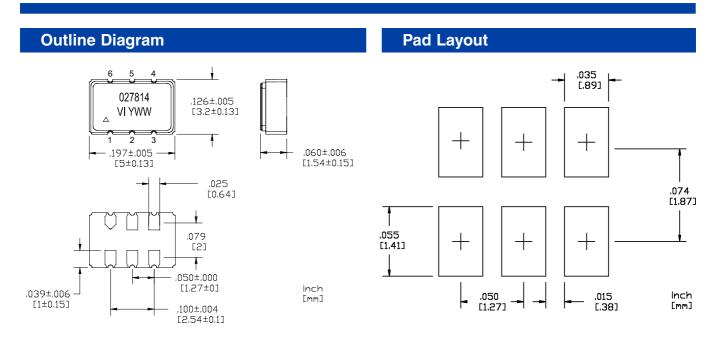




Figure 1. Output Waveform Conditions (25±5°C)

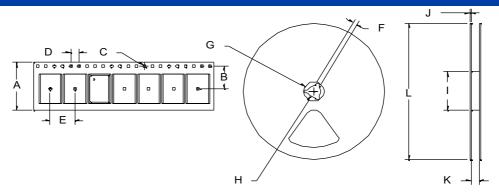


Figure 2. Typical Output Test

Pin Out		
Pin #	Symbol	Function
1	VC	Control Voltage
2	Tri-state	Logic low disables output. Logic high or N/C enables output waveform.
3	GND	Ground
4	fo	Output Frequency
5	CMOS/TTL	Logic low for CMOS optimized symmetry. Logic high or N/C for TTL optimized symmetry.
6	VDD	Supply Voltage

Tape and Reel

Tape and Reel Dimensions (mm)													
Tape Dimensions Reel Dimensions							# Per Reel						
Product	Α	В	С	D	Е	F	G	Н	I	J	K	L	
VC-800	12	5.5	1.5	4	8	1.78	20.6	13	55	6	12.4	178	500

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

Parameter	Symbol	Ratings	Unit
Power Supply	V _{DD}	6	Vdc
Storage Temperature	Tstorage	-55/125	°C
Voltage Control Range	Vc	0 to V _{DD}	V

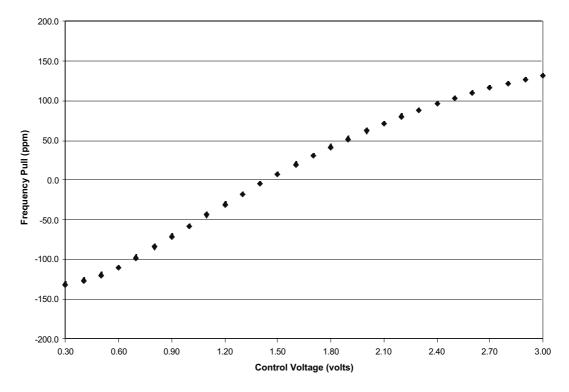


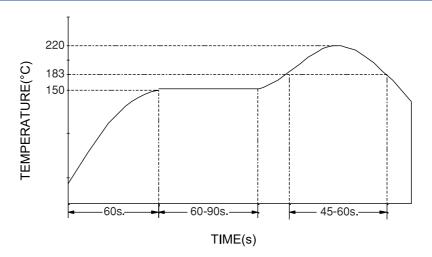
Figure 3. Typical Frequency Pull Versus Control Voltage, 35.328MHz Output, 3.3 Volt Supply

Reliability

The VC-800 is capable of meeting the following qualification tests.

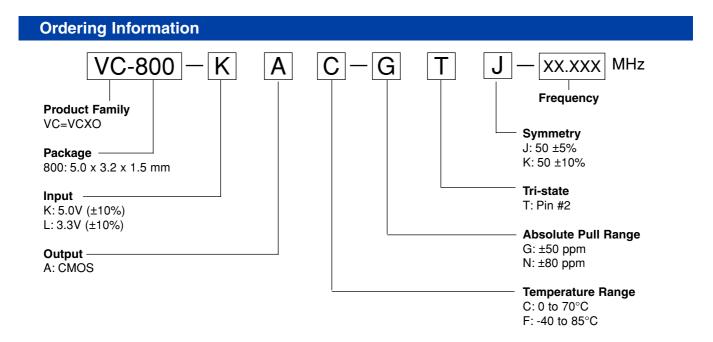
Environmental Compliance

Parameter	Conditions
Mechanical Shock	MIL-STD-883 Method 2002
Mechanical Vibration	MIL-STD-883 Method 2007
Solderability	MIL-STD-883 Method 2003
Gross and Fine Leak	MIL-STD-883 Method 1014
Resistance to Solvents	MIL-STD-883 Method 2016


Handling Precautions

Although ESD protection circuitry has been designed into the VC-800, proper precautions should be taken when handling and mounting. VI employs a Human Body Model and a Charged-Device Model (CDM) for ESD susceptibility testing and design protection evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry wide standard has been adopted for the CDM, a standard HBM of resistance=1.5kohms and capacitance = 100pF is widely used and therefore can be used for comparison purposes.

ESD Ratings


Model	Minimum	Conditions	
Human Body Model	1500	MIL-STD-883 Method 3115	
Charged Device Model	1000	JESD 22-C101	

Recommended Solder Reflow Profile

Standard Frequencies - MHz							
4.096	8.192	12.960	13.500	16.000			
16.384	17.664	25.920	27.000	32.000			
32.768	35.328	44.736	51.840				

Other frequencies may be available upon request

NOTE: Not all combinations of options are available.

For additional information please contact:

USA: Vectron International • 267 Lowell Road, Hudson, NH 03051 Tel: 1-88-VECTRON-1 • Fax: 1-888-FAX-VECTRON

EUROPE: Tel: 49 (0) 3328 4784 17 ĈFax: 49 (0) 3328 4784 30

ASIA: Tel: +86 21 28909740 / 41 / 42 ĈFax: +86 21 28909240 / 2890999Õ

www.vectron.com

©2001, Vectron International. Rev.22Oct01, 16 Aug 02